

py.js, a Python expressions parser and evaluator

py.js is a parser and evaluator of Python expressions, written in
pure javascript.

py.js is not intended to implement a full Python interpreter, its
specification document is the Python 2.7 Expressions spec [http://docs.python.org/reference/expressions.html] (along with the
lexical analysis part) as well as the Python builtins.

	Supported Python builtins

	Implementing a custom type
	Python-level callable

	Magic methods

	Utility functions for interacting with py.js objects
	Object Protocol

	Number Protocol

	Differences with Python
	Unsupported features

	Missing features

Usage

To evaluate a Python expression, simply call
py.eval(). py.eval() takes a mandatory Python expression
parameter, as a string, and an optional evaluation context (namespace
for the expression’s free variables), and returns a javascript value:

> py.eval("t in ('a', 'b', 'c') and foo", {t: 'c', foo: true});
true

If the expression needs to be repeatedly evaluated, or the result of
the expression is needed in its “python” form without being converted
back to javascript, you can use the underlying triplet of functions
py.tokenize(), py.parse() and py.evaluate()
directly.

API

Core functions

	
py.eval(expr[, context])

	“Do everything” function, to use for one-shot evaluation of Python
expressions. Chains tokenizing, parsing and evaluating the
expression then converts the result back to javascript

	Parameters:	
	expr (String) – Python expression to evaluate

	context (Object) – evaluation context for the expression’s free
variables

	Returns:	the expression’s result, converted back to javascript

	
py.tokenize(expr)

	Expression tokenizer

	Parameters:	expr (String) – Python expression to tokenize

	Returns:	token stream

	
py.parse(tokens)

	Parses a token stream and returns the corresponding parse tree.

The parse tree is stateless and can be memoized and reused for
frequently evaluated expressions.

	Parameters:	tokens – token stream from py.tokenize()

	Returns:	parse tree

	
py.evaluate(tree[, context])

	Evaluates the expression represented by the provided parse tree,
using the provided context for the exprssion’s free variables.

	Parameters:	
	tree – parse tree returned by py.parse()

	context – evaluation context

	Returns:	the “python object” resulting from the expression’s
evaluation

	Return type:	py.object

Conversions from Javascript to Python

py.js will automatically attempt to convert non-py.object
values into their py.js equivalent in the following situations:

	Values passed through the context of py.eval() or
py.evaluate()

	Attributes accessed directly on objects

	Values of mappings passed to py.dict

Notably, py.js will not attempt an automatic conversion of
values returned by functions or methods, these must be
py.object instances.

The automatic conversions performed by py.js are the following:

	null is converted to py.None

	true is converted to py.True

	false is converted to py.False

	numbers are converted to py.float

	strings are converted to py.str

	functions are wrapped into py.PY_dev

	Array instances are converted to py.list

The rest generates an error, except for undefined which
specifically generates a NameError.

Conversions from Python to Javascript

py.js types (extensions of py.object()) can be converted
back to javascript by calling their py.object.toJSON()
method.

The default implementation raises an error, as arbitrary objects can
not be converted back to javascript.

Most built-in objects provide a py.object.toJSON()
implementation out of the box.

Javascript-level exceptions

Javascript allows throwing arbitrary things, but runtimes don’t seem
to provide any useful information (when they ever do) if what is
thrown isn’t a direct instance of Error. As a result, while
py.js tries to match the exception-throwing semantics of Python it
only ever throws bare Error at the javascript-level. Instead, it
prefixes the error message with the name of the Python expression, a
colon, a space, and the actual message.

For instance, where Python would throw KeyError("'foo'") when
accessing an invalid key on a dict, py.js will throw
Error("KeyError: 'foo'").

Supported Python builtins

	
py.type(object)

	Gets the class of a provided object, if possible.

Note

currently doesn’t work correctly when called on a class
object, will return the class itself (also, classes
don’t currently have a type).

	
py.type(name, bases, dict)

	Not exactly a builtin as this form is solely javascript-level
(currently). Used to create new py.js types. See Implementing a custom type
for its usage.

	
py.None

	

	
py.True

	

	
py.False

	

	
py.NotImplemented

	

	
class py.object

	Base class for all types, even implicitly (if no bases are
provided to py.type())

	
class py.bool([object])

	

	
class py.float([object])

	

	
class py.str([object])

	

	
class py.unicode([object])

	

	
class py.tuple

	

	
class py.list

	

	
class py.dict

	

	
py.len(object)

	

	
py.isinstance(object, type)

	

	
py.issubclass(type, other_type)

	

	
class py.classmethod

	

Implementing a custom type

To implement a custom python-level type, one can use the
py.type() builtin. At the JS-level, it is a function with the
same signature as the type builtin [1]. It returns a
child type of its one base (or py.object if no base is
provided).

The dict parameter to py.type() can contain any
attribute, javascript-level or python-level: the default
__getattribute__ implementation will ensure they are converted to
Python-level attributes if needed. Most methods are also wrapped and
converted to Python-level callable, although there are a number
of special cases:

	Most “magic methods” of the data model (“dunder” methods) remain
javascript-level. See the listing of magic methods and their
signatures. As a result, they do not respect
the Python calling conventions

	The toJSON and fromJSON methods are special-cased to remain
javascript-level and don’t follow the
Python calling conventions

	Functions which have been wrapped explicitly (via
py.PY_def, py.classmethod or
py.staticmethod) are associated to the class
untouched. But due to their wrapper, they will use the
Python calling conventions anyway

Python-level callable

Wrapped javascript function or the __call__() method itself
follow the Python calling conventions. As a result, they can’t
(easily) be called directly from javascript code. Because
__new__() and __init__() follow from __call__(),
they also follow the Python calling conventions.

py.PY_call() should be used when interacting with them from
javascript is necessary.

Because __call__ follows the Python calling conventions,
instantiating a py.js type from javascript requires using
py.PY_call().

Python calling conventions

The python-level arguments should be considered completely opaque,
they should be interacted with through py.PY_parseArgs() (to
extract python-level arguments to javascript implementation code) and
py.PY_call() (to call Python-level callable from
javascript code).

A callable following the Python calling conventions must
return a py.js object, an error will be generated when failing to
do so.

Magic methods

py.js doesn’t support calling magic (“dunder”) methods of the
datamodel from Python code, and these methods remain javascript-level
(they don’t follow the Python calling conventions).

Here is a list of the understood datamodel methods, refer to the
relevant Python documentation [http://docs.python.org/reference/datamodel.html?highlight=data%20model#special-method-names]
for their roles.

Basic customization

	
__hash__()

	

	Returns:	String

	
__eq__(other)

	The default implementation tests for identity

	Parameters:	other – py.object to compare this object with

	Returns:	py.bool

	
__ne__(other)

	The default implementation calls __eq__() and reverses
its result.

	Parameters:	other – py.object to compare this object with

	Returns:	py.bool

	
__lt__(other)

	The default implementation simply returns
py.NotImplemented.

	Parameters:	other – py.object to compare this object with

	Returns:	py.bool

	
__le__(other)

	The default implementation simply returns
py.NotImplemented.

	Parameters:	other – py.object to compare this object with

	Returns:	py.bool

	
__ge__(other)

	The default implementation simply returns
py.NotImplemented.

	Parameters:	other – py.object to compare this object with

	Returns:	py.bool

	
__gt__(other)

	The default implementation simply returns
py.NotImplemented.

	Parameters:	other – py.object to compare this object with

	Returns:	py.bool

	
__str__()

	Simply calls __unicode__(). This method should not be
overridden, __unicode__() should be overridden instead.

	Returns:	py.str

	
__unicode__()

	

	Returns:	py.unicode

	
__nonzero__()

	The default implementation always returns py.True

	Returns:	py.bool

Customizing attribute access

	
__getattribute__(name)

	

	Parameters:	name (String) – name of the attribute, as a javascript string

	Returns:	py.object

	
__getattr__(name)

	

	Parameters:	name (String) – name of the attribute, as a javascript string

	Returns:	py.object

	
__setattr__(name, value)

	

	Parameters:	
	name (String) – name of the attribute, as a javascript string

	value – py.object

Implementing descriptors

	
__get__(instance)

	
Note

readable descriptors don’t currently handle “owner
classes”

	Parameters:	instance – py.object

	Returns:	py.object

	
__set__(instance, value)

	

	Parameters:	
	instance – py.object

	value – py.object

Emulating Numeric Types

	Non-in-place binary numeric methods (e.g. __add__, __mul__,
...) should all be supported including reversed calls (in case the
primary call is not available or returns
py.NotImplemented). They take a single
py.object parameter and return a single
py.object parameter.

	Unary operator numeric methods are all supported:

	
__pos__()

	

	Returns:	py.object

	
__neg__()

	

	Returns:	py.object

	
__invert__()

	

	Returns:	py.object

	For non-operator numeric methods, support is contingent on the
corresponding builtins being implemented

Emulating container types

	
__len__()

	

	Returns:	py.int

	
__getitem__(name)

	

	Parameters:	name – py.object

	Returns:	py.object

	
__setitem__(name, value)

	

	Parameters:	
	name – py.object

	value – py.object

	
__iter__()

	

	Returns:	py.object

	
__reversed__()

	

	Returns:	py.object

	
__contains__(other)

	

	Parameters:	other – py.object

	Returns:	py.bool

	[1]	with the limitation that, because py.js builds its
object model on top of javascript’s, only one base is allowed.

Utility functions for interacting with py.js objects

Essentially the py.js version of the Python C API, these functions
are used to implement new py.js types or to interact with existing
ones.

They are prefixed with PY_.

	
py.PY_parseArgs(arguments, format)

	Arguments parser converting from the user-defined calling
conventions to a JS object mapping
argument names to values. It serves the same role as
PyArg_ParseTupleAndKeywords [http://docs.python.org/c-api/arg.html#PyArg_ParseTupleAndKeywords].

var args = py.PY_parseArgs(
 arguments, ['foo', 'bar', ['baz', 3], ['qux', "foo"]]);

roughly corresponds to the argument spec:

def func(foo, bar, baz=3, qux="foo"):
 pass

Note

a significant difference is that “default values” will
be re-evaluated at each call, since they are within the
function.

	Parameters:	
	arguments – array-like objects holding the args and kwargs
passed to the callable, generally the
arguments of the caller.

	format – mapping declaration to the actual arguments of the
function. A javascript array composed of five
possible types of elements:

	The literal string '*' marks all following
parameters as keyword-only, regardless of them
having a default value or not [1]. Can
only be present once in the parameters list.

	A string prefixed by *, marks the positional
variadic parameter for the function: gathers all
provided positional arguments left and makes all
following parameters keyword-only
[2]. *args is incompatible with
*.

	A string prefixed with **, marks the
positional keyword variadic parameter for the
function: gathers all provided keyword arguments
left and closes the argslist. If present, this
must be the last parameter of the format list.

	A string defines a required parameter, accessible
positionally or through keyword

	A pair of [String, py.object] defines an
optional parameter and its default value.

For simplicity, when not using optional parameters
it is possible to use a simple string as the format
(using space-separated elements). The string will
be split on whitespace and processed as a normal
format array.

	Returns:	a javascript object mapping argument names to values

	Raises:	TypeError if the provided arguments don’t match the
format

	
class py.PY_def(fn)

	Type wrapping javascript functions into py.js callables. The
wrapped function follows the py.js calling conventions

	Parameters:	fn (Function) – the javascript function to wrap

	Returns:	a callable py.js object

Object Protocol

	
py.PY_hasAttr(o, attr_name)

	Returns true if o has the attribute attr_name,
otherwise returns false. Equivalent to Python’s hasattr(o,
attr_name)

	Parameters:	
	o – A py.object

	attr_name – a javascript String

	Return type:	Boolean

	
py.PY_getAttr(o, attr_name)

	Retrieve an attribute attr_name from the object o. Returns
the attribute value on success, raises AttributeError on
failure. Equivalent to the python expression o.attr_name.

	Parameters:	
	o – A py.object

	attr_name – a javascript String

	Returns:	A py.object

	Raises:	AttributeError

	
py.PY_str(o)

	Computes a string representation of o, returns the string
representation. Equivalent to str(o)

	Parameters:	o – A py.object

	Returns:	py.str

	
py.PY_isInstance(inst, cls)

	Returns true if inst is an instance of cls, false
otherwise.

	
py.PY_isSubclass(derived, cls)

	Returns true if derived is cls or a subclass thereof.

	
py.PY_call(callable[, args][, kwargs])

	Call an arbitrary python-level callable from javascript.

	Parameters:	
	callable – A py.js callable object (broadly speaking,
either a class or an object with a __call__
method)

	args – javascript Array of py.object, used as
positional arguments to callable

	kwargs – javascript Object mapping names to
py.object, used as named arguments to
callable

	Returns:	nothing or py.object

	
py.PY_isTrue(o)

	Returns true if the object is considered truthy, false
otherwise. Equivalent to bool(o).

	Parameters:	o – A py.object

	Return type:	Boolean

	
py.PY_not(o)

	Inverse of py.PY_isTrue().

	
py.PY_size(o)

	If o is a sequence or mapping, returns its length. Otherwise,
raises TypeError.

	Parameters:	o – A py.object

	Returns:	Number

	Raises:	TypeError if the object doesn’t have a length

	
py.PY_getItem(o, key)

	Returns the element of o corresponding to the object
key. This is equivalent to o[key].

	Parameters:	
	o – py.object

	key – py.object

	Returns:	py.object

	Raises:	TypeError if o does not support the operation, if
key or the return value is not a py.object

	
py.PY_setItem(o, key, v)

	Maps the object key to the value v in o. Equivalent to
o[key] = v.

	Parameters:	
	o – py.object

	key – py.object

	v – py.object

	Raises:	TypeError if o does not support the operation, or
if key or v are not py.object

Number Protocol

	
py.PY_add(o1, o2)

	Returns the result of adding o1 and o2, equivalent to
o1 + o2.

	Parameters:	
	o1 – py.object

	o2 – py.object

	Returns:	py.object

	
py.PY_subtract(o1, o2)

	Returns the result of subtracting o2 from o1, equivalent
to o1 - o2.

	Parameters:	
	o1 – py.object

	o2 – py.object

	Returns:	py.object

	
py.PY_multiply(o1, o2)

	Returns the result of multiplying o1 by o2, equivalent to
o1 * o2.

	Parameters:	
	o1 – py.object

	o2 – py.object

	Returns:	py.object

	
py.PY_divide(o1, o2)

	Returns the result of dividing o1 by o2, equivalent to
o1 / o2.

	Parameters:	
	o1 – py.object

	o2 – py.object

	Returns:	py.object

	
py.PY_negative(o)

	Returns the negation of o, equivalent to -o.

	Parameters:	o – py.object

	Returns:	py.object

	
py.PY_positive(o)

	Returns the “positive” of o, equivalent to +o.

	Parameters:	o – py.object

	Returns:	py.object

	[1]	Python 2, which py.js currently implements, does not
support Python-level keyword-only parameters (it can be
done through the C-API), but it seemed neat and easy
enough so there.

	[2]	due to this and contrary to Python 2, py.js allows
arguments other than **kwargs to follow *args.

Differences with Python

	py.js completely ignores old-style classes as well as their
lookup details. All py.js types should be considered matching
the behavior of new-style classes

	New types can only have a single base. This is due to py.js
implementing its types on top of Javascript’s, and javascript being
a single-inheritance language.

This may change if py.js ever reimplements its object model from
scratch.

	Piggybacking on javascript’s object model also means metaclasses are
not available (py.type() is a function)

	A python-level function (created through py.PY_def()) set
on a new type will not become a method, it’ll remain a function.

	py.PY_parseArgs() supports keyword-only arguments (though
it’s a Python 3 feature)

	Because the underlying type is a javascript String, there
currently is no difference between py.str() and
py.unicode(). As a result, there also is no difference
between __str__() and __unicode__().

Unsupported features

These are Python features which are not supported at all in py.js,
usually because they don’t make sense or there is no way to support them

	The __delattr__, __delete__ and __delitem__: as
py.js only handles expressions and these are accessed via the
del statement, there would be no way to call them.

	__del__ the lack of cross-platform GC hook means there is no way
to know when an object is deallocated.

	__slots__ are not handled

	Dedicated (and deprecated) slicing special methods are unsupported

Missing features

These are Python features which are missing because they haven’t been
implemented yet:

	Class-binding of descriptors doesn’t currently work.

	Instance and subclass checks can’t be customized

	“poor” comparison methods (__cmp__ and __rcmp__) are not
supported and won’t be falled-back to.

	__coerce__ is currently supported

	Context managers are not currently supported

	Unbound methods are not supported, instance methods can only be
accessed from instances.

Index

 _
 | P

_

 	
 	__contains__() (built-in function)

 	__eq__() (built-in function)

 	__ge__() (built-in function)

 	__get__() (built-in function)

 	__getattr__() (built-in function)

 	__getattribute__() (built-in function)

 	__getitem__() (built-in function)

 	__gt__() (built-in function)

 	__hash__() (built-in function)

 	__invert__() (built-in function)

 	__iter__() (built-in function)

 	__le__() (built-in function)

 	
 	__len__() (built-in function)

 	__lt__() (built-in function)

 	__ne__() (built-in function)

 	__neg__() (built-in function)

 	__nonzero__() (built-in function)

 	__pos__() (built-in function)

 	__reversed__() (built-in function)

 	__set__() (built-in function)

 	__setattr__() (built-in function)

 	__setitem__() (built-in function)

 	__str__() (built-in function)

 	__unicode__() (built-in function)

P

 	
 	py.bool (built-in class)

 	py.classmethod (built-in class)

 	py.dict (built-in class)

 	py.eval() (built-in function)

 	py.evaluate() (built-in function)

 	py.False (built-in variable)

 	py.float (built-in class)

 	py.isinstance() (built-in function)

 	py.issubclass() (built-in function)

 	py.len() (built-in function)

 	py.list (built-in class)

 	py.None (built-in variable)

 	py.NotImplemented (built-in variable)

 	py.object (built-in class)

 	py.parse() (built-in function)

 	py.PY_add() (built-in function)

 	py.PY_call() (built-in function)

 	py.PY_def (built-in class)

 	py.PY_divide() (built-in function)

 	py.PY_getAttr() (built-in function)

 	
 	py.PY_getItem() (built-in function)

 	py.PY_hasAttr() (built-in function)

 	py.PY_isInstance() (built-in function)

 	py.PY_isSubclass() (built-in function)

 	py.PY_isTrue() (built-in function)

 	py.PY_multiply() (built-in function)

 	py.PY_negative() (built-in function)

 	py.PY_not() (built-in function)

 	py.PY_parseArgs() (built-in function)

 	py.PY_positive() (built-in function)

 	py.PY_setItem() (built-in function)

 	py.PY_size() (built-in function)

 	py.PY_str() (built-in function)

 	py.PY_subtract() (built-in function)

 	py.str (built-in class)

 	py.tokenize() (built-in function)

 	py.True (built-in variable)

 	py.tuple (built-in class)

 	py.type() (built-in function)

 	(py method)

 	py.unicode (built-in class)

 nav.xhtml

 Table of Contents

 		py.js, a Python expressions parser and evaluator

 		Supported Python builtins

 		Implementing a custom type

 		Python-level callable

 		Python calling conventions

 		Magic methods

 		Basic customization

 		Customizing attribute access

 		Implementing descriptors

 		Emulating Numeric Types

 		Emulating container types

 		Utility functions for interacting with py.js objects

 		Object Protocol

 		Number Protocol

 		Differences with Python

 		Unsupported features

 		Missing features

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

